587 research outputs found

    Radiocarbon dating of methane and carbon dioxide evaded from a temperate peatland stream

    Get PDF
    Streams draining peatlands export large quantities of carbon in different chemical forms and are an important part of the carbon cycle. Radiocarbon (14C) analysis/dating provides unique information on the source and rate that carbon is cycled through ecosystems, as has recently been demonstrated at the air-water interface through analysis of carbon dioxide (CO2) lost from peatland streams by evasion (degassing). Peatland streams also have the potential to release large amounts of methane (CH4) and, though 14C analysis of CH4 emitted by ebullition (bubbling) has been previously reported, diffusive emissions have not. We describe methods that enable the 14C analysis of CH4 evaded from peatland streams. Using these methods, we investigated the 14C age and stable carbon isotope composition of both CH4 and CO2 evaded from a small peatland stream draining a temperate raised mire. Methane was aged between 1617-1987 years BP, and was much older than CO2 which had an age range of 303-521 years BP. Isotope mass balance modelling of the results indicated that the CO2 and CH4 evaded from the stream were derived from different source areas, with most evaded CO2 originating from younger layers located nearer the peat surface compared to CH4. The study demonstrates the insight that can be gained into peatland carbon cycling from a methodological development which enables dual isotope (14C and 13C) analysis of both CH4 and CO2 collected at the same time and in the same way

    In-service Initial Teacher Education in the Learning and Skills Sector in England: Integrating Course and Workplace Learning

    Get PDF
    The aim of the paper is to advance understanding of in-service learning and skills sector trainee teachers’ learning and propose ways of improving their learning. A conceptual framework is developed by extending Billett’s (International Journal of Educational Research 47:232–240, 2008) conceptualisation of workplace learning, as a relationally interdependent process between the opportunities workplaces afford for activities and interactions and how individuals engage with these, to a third base of participation, the affordances of the initial teacher education course. Hager and Hodkinson’s (British Educational Research Journal 35:619–638, 2009) metaphor of ‘learning as becoming’ is used to conceptualise the ways trainees reconstruct learning in a continuous transactional process of boundary crossing between course and workplace. The findings of six longitudinal case studies of trainees’ development, and evidence from other studies, illustrate the complex interrelationships between LSS workplace affordances, course affordances and trainee characteristics and the ways in which trainees reconstruct learning in each setting. The experience of teaching and interacting with learners, interactions with colleagues, and access to workplace resources and training are important workplace affordances for learning. However, some trainees have limited access to these affordances. Teaching observations, course activities and experiences as a learner are significant course affordances. Trainees’ beliefs, prior experiences and dispositions vary and significantly influence their engagement with course and workplace affordances. It is proposed that better integration of course and workplace learning through guided participation in an intentional workplace curriculum and attention to the ways trainees choose to engage with this, together with the use of practical theorising has the potential to improve trainee learning

    Catchment land use effects on fluxes and concentrations of organic and inorganic nitrogen in streams

    Get PDF
    We present annual downstream fluxes and spatial variation in concentrations of dissolved inorganic nitrogen (NH4+ and NO3−) and dissolved organic nitrogen (DON) in two adjacent Scottish catchments with contrasting land use (agricultural grassland vs. semi-natural moorland). Inter- and intra-catchment variation in N species and the relation to spatial differences in agricultural land use were studied by determining catchment N input through agricultural activities at the field scale and atmospheric inputs at a 25 m grid resolution. The average agricultural N input of 52 kg N ha−1 yr−1 to the grassland catchment was more than 4 times higher than the input of 12 kg N ha−1 yr−1 to the moorland catchment, supplemented by 12.3 and 8.2 kg N ha−1 yr−1 through atmospheric deposition, respectively. The grassland catchment was associated with an annual downstream total dissolved nitrogen (TDN) flux of 14.4 kg N ha−1 yr−1, which was 66% higher than the flux of 8.7 kg ha−1 yr−1 from the moorland catchment. This difference was largely due to the NO3− flux being one order of magnitude higher in the grassland catchment. Dissolved organic N fluxes were similar for the two catchments (7.0 kg ha−1 yr−1) with DON contributing 49% to the TDN flux in the grassland compared with 81% in the moorland catchment. The results highlight the importance of diffuse agricultural N inputs to stream NO3− concentrations and the importance of quantifying all the major aquatic N species for developing a better understanding of N transformations and transport in the atmosphere-soil-water system

    Estimation of nitrogen budgets for contrasting catchments at the landscape scale

    Get PDF
    A comprehensive assessment of nitrogen (N) flows at the landscape scale is fundamental to understand spatial interactions in the N cascade and to inform the development of locally optimised N management strategies. To explore these interactions, complete N budgets were estimated for two contrasting hydrological catchments (dominated by agricultural grassland vs. semi-natural peat-dominated moorland), forming part of an intensively studied landscape in southern Scotland. Local scale atmospheric dispersion modelling and detailed farm and field inventories provided high resolution estimations of input fluxes. Direct agricultural inputs (i.e. grazing excreta, N<sub>2</sub> fixation, organic and synthetic fertiliser) accounted for most of the catchment N inputs, representing 82% in the grassland and 62% in the moorland catchment, while atmospheric deposition made a significant contribution, particularly in the moorland catchment, contributing 38% of the N inputs. The estimated catchment N budgets highlighted areas of key uncertainty, particularly N<sub>2</sub> exchange and stream N export. The resulting N balances suggest that the study catchments have a limited capacity to store N within soils, vegetation and groundwater. The "catchment N retention", i.e. the amount of N which is either stored within the catchment or lost through atmospheric emissions, was estimated to be 13% of the net anthropogenic input in the moorland and 61% in the grassland catchment. These values contrast with regional scale estimates: Catchment retentions of net anthropogenic input estimated within Europe at the regional scale range from 50% to 90%, with an average of 82% (Billen et al., 2011). This study emphasises the need for detailed budget analyses to identify the N status of European landscapes

    Carbon dioxide transport across the hillslope-riparian-stream continuum in a boreal headwater catchment

    Get PDF
    Headwater streams export CO2 as lateral downstream export and vertical evasion from the stream surface. CO2 in boreal headwater streams generally originates from adjacent terrestrial areas, so determining the sources and rate of CO2 transport along the hillslope–riparian–stream continuum could improve estimates of CO2 export via the aquatic pathway, especially by quantifying evasion at higher temporal resolutions. Continuous measurements of dissolved CO2 concentrations and water table were made along the hillslope–riparian–stream continuum in the Västrabäcken sub-catchment of the Krycklan catchment, Sweden. Daily water and CO2 export from the hillslope and riparian zone were estimated over one hydrological year (October 2012–September 2013) using a flow-concentration model and compared with measured lateral downstream CO2 export. Total water export over the hydrological year from the hillslope was 230 mm yr−1 compared with 270 mm yr−1 from the riparian zone. This corresponds well (proportional to the relative upslope contributing area) to the annual catchment runoff of 265 mm yr−1. Total CO2 export from the riparian zone to the stream was 3.0 g CO2-C m−2 yr−1. A hotspot for riparian CO2 export was observed at 30–50 cm depth (accounting for 71 % of total riparian export). Seasonal variability was high with export peaks during the spring flood and autumn storm events. Downstream lateral CO2 export (determined from stream water dissolved CO2 concentrations and discharge) was 1.2 g CO2-C m−2 yr−1. Subtracting downstream lateral export from riparian export (3.0 g CO2-C m−2 yr−1) gives 1.8 g CO2-C m−2 yr−1 which can be attributed to evasion losses (accounting for 60 % of export via the aquatic pathway). The results highlight the importance of terrestrial CO2 export, especially from the riparian zone, for determining catchment aquatic CO2 losses and the importance of the CO2 evasion component to carbon export via the aquatic conduit

    The cluster population of the irregular galaxy NGC 4449 as seen by the Hubble Advanced Camera for Surveys

    Full text link
    We present a study of the star cluster population in the starburst irregular galaxy NGC 4449 based on B, V, I, and Ha images taken with the Advanced Camera for Surveys on the Hubble Space Telescope. We derive the cluster properties such as size, ellipticity, and total magnitudes. Cluster ages and masses are derived fitting the observed spectral energy distributions with different population synthesis models. Our analysis is strongly affected by the age-metallicity degeneracy; however, if we assume a metallicity of ~1/4 solar, as derived from spectroscopy of HII regions, we find that the clusters have ages distributed quite continuously over a Hubble time, and they have masses from ~10^3 M_sun up to ~2 x 10^6 M_sun, assuming a Salpeters' IMF down to 0.1 M_sun. Young clusters are preferentially located in regions of young star formation, while old clusters are distributed over the whole NGC 4449 field of view, like the old stars (although we notice that some old clusters follow linear structures, possibly a reflection of past satellite accretion). The high SF activity in NGC 4449 is confirmed by its specific frequency of young massive clusters, higher than the average value found in nearby spirals and in the LMC (but lower than in other starburst dwarfs such as NGC 1705 and NGC 1569), and by the flat slope of the cluster luminosity function (dN(L_V)\propto L_V^{-1.5} dL for clusters younger than 1 Gyr). We use the upper envelope of the cluster log(mass) versus log(age) distribution to quantify cluster disruption, and do not find evidence for the high (90%) long-term infant mortality found by some studies. For the red clusters, we find correlations between size, ellipticity, luminosity and mass: brighter and more massive clusters tend to be more compact, and brighter clusters tend to be also more elliptical.Comment: Accepted for publication on AJ, one data point changed in Fig. 1

    The Veterinary Identity: A Time and Context Model

    Get PDF
    The nature of professionalism teaching is a current issue in veterinary education, with an individual’s identity as a professional having implications for one’s values and behaviors, as well as for his or her career satisfaction and psychological well-being. An appropriately formed professional identity imparts competence in making complex decisions—those that involve multiple perspectives and are complicated by contextual challenges. It enables an individual to act in a way that aligns with his or her professional values and priorities, and imparts resilience to situations in which one’s actions are dissonant to these personal beliefs. There are challenges in professionalism teaching that relate to student engagement and faculty confidence in this area. However, these cannot be addressed without first defining the veterinary professional identity—in effect, the aim of professionalism teaching. In this article, existing identity models from the wider literature have been analyzed through a veterinary lens. This analysis was then used to construct a model of veterinary professional identity that incorporates the self (personal morals and values), social development (learning from the workplace environment), and professional behaviors. Individuals who form what we have termed self–environment–behavior connections are proposed to be able to use workplace learning opportunities to inform their identity development, such that environmental complexity does not obstruct the link between values and behaviors. Those who fail to connect with the environment in this way may perceive that environmental influences (e.g., the client, financial limitations) are obstructive to enacting their desired identity, and they may struggle with decision making in complex scenarios
    • …
    corecore